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Abstract. Using the scattering approach to quantization, we define an appropriate
representation of the billiard wavefunction on the scattering Poincaré section. The expectation
values of smooth operators in terms of these Poincaré section wavefunctions are expressed as
sums over periodic orbits. A special operator is used to define scars on the section and the
relation to scars in configuration space is discussed and demonstrated numerically.

1. Introduction

The structure of the eigenstates of a quantum system which is chaotic in the classical
limit has been a major issue in quantum chaology. The Shnirelman theorem [1] states
that as the energy goes to infinity, the probability density of most eigenstates of a chaotic
billiard approaches a uniform distribution. Thus, the discovery of regions of high probability
along classical periodic orbits came as a surprise. These structures, called ‘scars’, were first
observed by McDonald and Kaufman [2] and later also by Heller [3] for the stadium billiard.
Bogomolny [4] developed the semiclassical theory of scars for wavefunctions, and a similar
analysis in phase-space, using Wigner functions, was performed by Berry [5]. Significant
progress was achieved by Agam and Fishman [6] who were able to derive a semiclassical
Wigner function without having to resort to energy smearing as previous authors did, and
hence provided a much clearer description. To achieve this, they extended the method of
Berry and Keating [7] for deriving a semiclassical expression for the spectral determinant
as a finite sum over ‘composite orbits’. This theory gave them for the first time the means
to predict whether a given wavefunction should be scarred by a particular orbit [8].

One of the most convenient tools in the analysis of classical Hamiltonian dynamics is
the Poincaŕe section, which is used to convert the continuous time evolution into a discrete
mapping. The main advantage in this construction is the reduction of the dimension of the
effective phase space. The quantum mechanical treatment of the corresponding systems was
traditionally carried out in the full configuration space, and only recently was quantization in
terms of Poincaŕe sections introduced [9–15]. These studies focus mainly on the calculation
of energy spectra, and the semiclassical versions of these methods make use of classical
periodic orbits of the Poincaré map. In the present paper we would like to make one
further step and construct the appropriate representation of the complete wavefunction on
the section. In terms of these wavefunctions, we shall compute the semiclassical expression
for expectation values of observables on the section. Since one of the main motivations
of the present work is to identify scars on the section, we shall define an operator whose
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expectation value yields the properly smoothed probability density. It is not clear whether
the occurrence of scars in configuration space implies a scarred section, and vice versa.
However, if scars exist on the section, they should be easily observed as local maxima of
these probability distributions. Scars were traditionally defined as enhanced probabilities
along periodic orbits in phase space (for Wigner distributions) or in configuration space
(for wavefunctions) [3, 5, 6, 9, 16, 17]. Searching for them on the Poincaré section can bring
some practical advantage, since the high probability domains are expected to concentrate
on points rather than on lines, so they might be easier to observe.

In order to investigate scars on the section, we first have to identify the quantum object
which corresponds to a wavefunction on the section. We shall show that it is not necessarily
the restriction of the wavefunction to the section! Consider, for example, the case of
billiards. The section wavefunction is neither the normal derivative (for Dirichlet boundary
conditions), nor the value of the wavefunction (for Neumann boundary conditions) at the
boundary. This is somewhat counterintuitive, since for billiards, the interior wavefunctions
can be expressed uniquely in terms of the normal derivative (or the wavefunction) along the
boundary. One would expect therefore that these boundary functions, which store all the
information about the interior wavefunction, will be the appropriate section wavefunctions.
However, they are not. This simple example illustrates the need to define the appropriate
representation of the wavefunction on the section and this is one of the main purposes of
the present work. Some representations of section wavefunctions will be given at the end
of section 3.3.

We shall formulate our theory within the scattering approach to quantization. In section 2
we shall briefly review this method, and introduce the necessary background and definitions.
At this point we shall define the quantum Hilbert space which is the analogue of the classical
phase space of the section. We shall then discuss the class of observables whose expectation
values we are about to calculate, and in particular, define the scar observables. We shall
express the expectation values of the observables in terms of the derivatives of a generalized
ζ function, which will be the starting point of a semiclassical calculation. A semiclassical
analysis and numerical illustrations of the main building blocks of the theory applied to
the Limacon billiard will follow in the third section. We shall discuss and summarize our
findings in the last section.

2. Expectation values on the section

2.1. The semiclassical secular equation

Before we come to our main topic, we would like to recall a common feature of all the
semiclassical quantization schemes which are based on the dynamics on a Poincaré section:
one defines a unitary operatorS(E) and the quantization condition is expressed via a secular
function

ζ(E) = det(I − S(E)) . (1)

The spectrum{Et, t = 1, 2, . . .} is obtained as the zeros of the secular equation. At
these energies, theS-matrix has an eigenvalue 1, and the corresponding eigenvector will
be denoted by|1t 〉. In all cases,S(E) is semiclassically unitary, and in the semiclassical
limit it is represented by a matrix with a finite dimension3. As an example, consider
the scattering approach to quantization. It was originally proposed for the quantization
of billiards [10, 11, 13, 18, 20], and was recently extended to more general Hamiltonian
systems [14]. In this methodS(E) is the restriction of the scattering matrix at an energyE,
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to the semiclassically relevant space of non-evanescent modes. In Bogomolny’s treatment
[9], theT (E) operator plays the same role. Since we will be mainly concerned with billiards,
we use the wave numberk and define the spectrum of wave numbers{kt } by Et = h̄2k2

t /2m.
The connection to the classical dynamics comes through the identification of theS

operator as the quantum counterpart of the Poincaré mapping on an appropriate section. We
shall denote the classical action-angle variables on the section by(l, θ). For billiards, when
the boundary is considered as an obstacle for scattering from the exterior, theS-matrix
is analogous to the Poincaré scattering mapping [19, 23]. This, in turn, is isomorphic to
the mapping which describes the interior dynamics on the section defined by the boundary
[11, 18]. One of the consequences of the semiclassical correspondence between theS-
matrix and the Poincaré mapping is that3 is expressed as the phase-space area of the
section, measured in units of 2πh̄. If, for example, theS-matrix describes the scattering
from the exterior of a billiard,3(k) = [k0/π ] where [·] stands for the integer part, and0
is the circumference of the billiard.

The semiclassical version of the secular equation (1) is derived in the following way.
The determinant det(I − S) can be expressed as a function of all TrSn, with n 6 3.
Because of the semiclassical unitarity ofS, it suffices to know only TrSn for n ∈ {1, 3/2}
and the total scattering phase, e−i2 = detS. The semiclassical evaluation of these quantities
provides the building blocks for the semiclassicalζ function. To the leading semiclassical
order,2(E) is proportional to the smooth spectral counting functionN̄(E),

2(E) ≈ 2πN̄(E) . (2)

Also,

Tr Sn(k) ≈
∑
p∈Pn

np

|Det(1 − M
rp
p )|1/2

eirp(lpk−νpπ/2) . (3)

Here, Pn is the set of all periodic orbits which are obtained by repeatingrp times the
primitive orbits with periodsnp, such thatnprp = n. The length of the primitive orbit is
lp andνp is the Maslov index.Mp is the monodromy matrix of the primitive orbit (which
only for billiard systems is independent ofk). Thus, periodic orbits with only up to3/2
reflections have to be determined. The advantage of this approach is that the semiclassical
approximation of the secular equation is written directly in a ‘Riemann Siegel look-alike’
form of theζ function [7].

2.2. Quantum mechanics on the Poincar´e section

The semiclassical correspondence between theS-matrix and the Poincaré map indicates
that the Hilbert space, which is the quantum analogue of the section phase-space, is the
3-dimensional space where theS matrix acts. We shall define the representation of the
total scattering eigenfunction on the Poincaré section in the following way.

On the section, the position operatorθ̂ has eigenvectors〈θ |. Thus, the object for
inspection is〈θ |1t 〉 which is the wavefunction in theθ representation on the section. In
order to clarify the relation between〈θ |1t 〉 and the full wavefunction, we have to invoke the
basic concept of ‘transparency’ which is a basic element of the scattering approach [11, 23].
Any scattering state behaves asymptotically like

9l(r) → Il(r) +
∑

l
′

Sl,l
′ Ol

′ (r) as r → ∞ (4)

whereIl(r) andOl(r) are the asymptotic incoming and outgoing scattering wavefunctions.
When theS-matrix has an eigenvalue 1, the linear combination of9l(r) with coefficients
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which are the corresponding eigenvector ofS, can be extended to the interior as a proper
interior wavefunction. (A rigorous description of the concept is given in [20, 21].) In this
sense, the information contained in the eigenvector of theS-matrix suffices to construct
both the section and the configuration space wavefunction.

We shall study observablesA on the section. They can be represented by3 × 3

Hermitian matrices. We shall assumeA to be smooth on the quantum scale in a sense which
is defined below. We shall show thatAt ≡ 〈1t |A|1t 〉 can be expressed semiclassically in
terms of periodic orbits on the Poincaré section. This semiclassical expression will add
another intuitive explanation of the role of〈θ |1t 〉 as the representation of the complete
wavefunction on the section.

We shall start with some formal manipulations whose purpose will become clear later.
They will enable us to cast the formalism in terms of a characteristic polynomial of some
operator. The expectation values which we seek will be then expressed as a ratio of partial
derivatives of this characteristic polynomial [22]. Consider two3 × 3 matricesS andA,
S is unitary with (a non-degenerate) spectrum e−iωl on the unit circle, andA is Hermitian.
We are looking for the expectation value ofA, in a particular eigenstate|r〉 of S,

Ar = 〈r|A|r〉 . (5)

We now define the characteristic polynomial of the product eαAS, whereα is an arbitrary
real variable:

g+(α, ω) = det(I − eiω eαAS) . (6)

This is a polynomial in eiω. It is useful to define the function

g−(α, ω) = det(I − e−iωS† e−αA) . (7)

The functionsg+ and g− are related, and this calls for the introduction of a function
g(α, ω) through the relation,

g(α, ω) ≡ ei(2−ω3)/2 e−αĀ/2g+(α, ω) = e−i(2−ω3)/2 eαĀ/2g−(α, ω) . (8)

Here we definedĀ = tr A. One can easily check thatAr can be expressed as the residue at
ω = ωr , of the logarithmic derivative ofg+(α, ω) calculated atα = 0. This follows from
the identity

∂

∂α
logg+(α, ω)

∣∣∣∣
α=0

=
∑

l

Al

1 − e−i(ω−ωl)
. (9)

Hence,

Ar = i

[(
∂g+

∂α

) / (
∂g+

∂ω

)]
α=0,ω=ωr

= i

[(
∂g

∂α

) / (
∂g

∂ω

)]
α=0,ω=ωr

. (10)

The last equality follows simply from the definition of the functiong(α, ω) from (8).
Before proceeding with the semiclassical theory, we should explain what we mean

by requiring the observables to be ‘smooth on the quantum scale’. This requirement can
be given a precise definition in the representation where theA operator is diagonal with
eigenvaluesaq, q = 1, . . . , 3. In the semiclassical limit3 � 1, and hence there exists an
intermediate scale1l with 3 > 1l > 1. We require thataq be smooth on this scale. We
shall also assume that the classical analogue ofaq is a well defined functiona(q) where
(p, q) are phase-space variables on the section which are canonically conjugate to(l, θ).
As an illustrative example, consider the operator which will be used to define scars on the
sections

〈θ |Ascar(θ0)|θ ′〉 = δ(θ − θ ′)f (θ − θ0) (11)
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where f (x) is a 2π -periodic and positive weight function with a width 2π/1l and
normalized to unity on the interval [0, 2π ]. When Ascar(θ0) is applied to any function
on the above interval, it yields its average value in the 2π/1l vicinity of θ0. In particular,

pt(θ0) =
∫ 2π

0

∫ 2π

0
〈1t |θ〉〈θ |Ascar(θ0)|θ ′ 〉〈θ ′ |1t 〉 dθ dθ

′
(12)

yields the smooth distribution for the special eigenvector ofS(kt ) along the boundary. This
is the function which should be scarred, if scars exist on the section. A different example
for a smooth scar observable would be to defineA as the projection on coherent states in the
angular momentum representation. This yields a Husimi picture on the scattering section,
which will be illustrated briefly in the third section.

2.3. Periodic orbit sum for expectation values on the section

We consider now the upperω plane, and in order to calculateg(α, ω) there, we use the
definition of g in terms ofg+, equation (8), and expand logg+(α, ω) with S = S(kt ):

logg+(α, ω) = −
∞∑

n=1

1

n
eiωn tr(eαAS(kt ))

n . (13)

We can always choose=(ω) to be sufficiently positive so that the expansion converges
absolutely. We now introduce the semiclassical approximation to calculate tr(eαAS)n. We
perform the calculation in theq representation whereA is diagonal and smooth on the
quantum scale. Next we substitute the semiclassical expression for theS-matrix in theq

representation and perform the intermediate summations by the saddle-point approximation.
Because of the requirement of smoothness, the presence of theA-dependent factors does
not affect the saddle points, which aren-periodic points of the mapping induced by the
classical analogue of theS(k) operator. Using standard semiclassical manipulations, and
assuming that the periodic points of the mapping are isolated, we obtain

tr(eαAS(k))n ≈
∑
p∈Pn

eαrp
∑np

s=1 a(qs )
np eirp(lpk−νpπ/2)

|det(I − M
rp
p )|1/2

(14)

which for α = 0 is identical to (3). We shall introduce

ap =
np∑

s=1

a(qs) (15)

which can be interpreted as the value ofa(q) accumulated along thep periodic orbit. As
np → ∞ the ratioap/np approaches the ergodic average ofa(q) which will be denoted by
ā. Substituting (14) in (13) we can perform the sums over repetitions of primitive periodic
orbits. The semiclassical approximation forg+ reads

g+
scl(α, ω) =

∞∏
m=0

∏
p

(
1 − eiωnp+αap t+p,m

)
. (16)

The second product runs through the primitive periodic orbits and

t+p,m = eiSp−npλp(m+1/2) . (17)

For α = 0 the product (16) over primitive periodic orbits converges in the absolute sense
only if =(ω) is larger than the ‘entropy barrier’ which is given approximately by half the
Lyapunov exponentλ. We are interested in theα dependence ofg only in a narrow interval
|α| < αc. (As a matter of fact, since we need only the derivative ofg at α = 0, the width
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of the interval is infinitesimal.) In this interval, the product will converge in the domain
=(ω) > B = λ/2 + αc|ā|.

The semiclassical expansion ofg in the domain=(ω) < 0 makes use of the definition
of g in terms ofg− (8). Following similar steps one gets for the functiong−

g−
scl(α, ω) =

∞∏
m=0

∏
p

(
1 − e−iωnp−αap t−p,m

)
(18)

with

t−p,m = e−iSp−npλp(m+1/2) . (19)

This product converges in the absolute sense only for=(ω) < −B.
Using equation (8) we can define the semiclassical approximation forg as

gscl =
{

e−i(3ω−2)/2−αĀ/2g+
scl =(ω) > B

e+i(3ω−2)/2+αĀ/2g−
scl =(ω) < −B .

We now make the crucial assumption thatgscl preserves the analyticity of the exactg

function, so that it can be continued to the domain|=(ω)| < B by a Cauchy integral. To
this end, it is necessary to express the products in (16) and (18) as power series in e±iω

g±
scl = 1 +

∞∑
n=1

G±
n e±inω . (20)

To understand the structure of the coefficientsG±
n , we consider all the groups of primitive

periodic orbits whose periods including repetitions sum up ton:
∑

j rpj
npj

= n. Such groups
are called ‘pseudo-orbits’ [5, 7] or ‘composite orbits’ [10] with composite periodn and are
formally obtained from (16) and (18) using the Euler identity [6, 23]. One can define the
corresponding composite action and composite Lyapunov exponent as

8c = k
∑

j

rpj
lpj

3c = 1

n

∑
j

rpj
npj

λpj
(21)

wherec is used to enumerate the composite orbits. We shall denote the set of all composite
orbits with the same composite period,n, by Cn. In terms of these composite objects, we
get

G±
n = (−1)n

∑
c∈Cn

e±i8c−n3c/2 e∓αac (22)

where we define the composite weightac = ∑
j rpj

apj
and assume that the symbol

∑
c∈Cn

also includes the combinatorial factors from the application of the Euler identity. Breaking
up the infinite products by the Euler identity is allowed as long asω is in the domains where
the products converge absolutely. Taking the contour of integration along lines which are
parallel to the real axis within the domains of convergence, we get for arbitrary realω

gscl(ω) = 1

2π i

∫ ∞−iη

−∞−iη

dω′

ω′ − ω
ei(3ω′−2)/2−αĀ/2

∞∑
n=0

G−
n e−inω′

+ 1

2πi

∫ −∞+iη

∞+iη

dω′

ω′ − ω
e−i(3ω′−2)/2+αĀ/2

∞∑
n=0

G+
n e+inω′

. (23)
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Here η is an arbitrary positive constant larger thanB. The integral above can be carried
out term by term, and only a few of them yield a non-vanishing contribution [23]. The
resulting expression forgscl is a finite polynomial in e±iω which, for odd3 reads

gscl = e−i2/2−αĀ/2
[3/2]∑
n=0

G−
n ei(3/2−n)ω + ei2/2+αĀ/2

[3/2]∑
n=0

G+
n e−i(3/2−n)ω . (24)

For even3 a term

1
2 e−i2/2−αĀ/2G−

3/2 + 1
2 ei2/2+αĀ/2G+

3/2 (25)

has to be added to the previous equation, which has to be treated separately becauseG±
3/2

is its own symmetric partner. For all othern, G±
3−n and G∓

n are related because of the
unitarity of S and the structure of (6) and (7). A simple notation

∑′
can be introduced,

which shall indicate that for even3 the last term in the sum has to be multiplied by1
2. We

can substitute the above expression forgscl in (10) and obtain the expectation valueAt in
terms of a finite expression which involves classical quantities exclusively,

At =
= ∑′[3/2]

n=0 (−1)n
∑

c∈Cn
( Ā

/
2 − ac) ei(8c+2/2) e−n3c/2

= ∑[3/2]
n=0 (−1)n(3/2 − n)

∑
c∈Cn

ei(8c+2/2) e−n3c/2
. (26)

Note that atk = kt we haveωr = 0 mod 2π , since we are interested in the particular
eigenvector of theS-matrix, whose eigenvalue is 1. Hence, for consistency, the eigenvalue
Et has to be taken from the semiclassical spectral determinant. A clearer expression follows
after rearranging the terms and writing the above formula as

At = Ā + Aosc
t

3 + Losc
t

(27)

where

Aosc
t = −2

∑′[3/2]
n=0 (−1)n

∑
c∈Cn

ac sin(8c + 2/2) e−n3c/2∑′[3/2]
n=0 (−1)n

∑
c∈Cn

sin(8c + 2/2) e−n3c/2
(28)

and

Losc
t = −2

∑′[3/2]
n=0 n(−1)n

∑
c∈Cn

sin(8c + 2/2) e−n3c/2∑′[3/2]
n=0 (−1)n

∑
c∈Cn

sin(8c + 2/2) e−n3c/2
. (29)

Note thatAt defined above is manifestly real. The form (27) can be interpreted in the
following way. If one ignores the termsAosc

t andLosc
t one obtains the smooth or mean value

for At which is nothing but1
3

tr A which, in the semiclassical limit, approaches the ergodic
average ofA = ā. This average does not depend on the particular state|1t 〉 for which
the expectation value is computed. The termAosc

t results from the interference of many
contributions from the periodic orbits and their weightsap, and depends on the particular
state considered via the composite actions and also the composite Lyapunov exponents.
Losc

t is a correction to the normalization, and as such it does not depend on the particular
observable which is discussed.

We can immediately apply this result to calculate the expectation value of the scar
observableAscar(θ0). For this purpose, we may disregard the denominator all together,
since we are only interested in the relative intensities for different values ofθ0. In the
numerator we can distinguish two different sources ofθ0 dependence. The first term is
proportional toĀ(θ0) and therefore it gives the smooth background. It is modulated by the
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second sum, where contributions from individual composite orbits come from the factors
ac(θ0). The resulting smooth distribution can be written as

pt(θ0) = p̄(θ0) + 2

∑′[3/2]
n=1 (−1)n+1 ∑

c∈Cn
fc(θ0) sin(8c + 2/2) e−n3c/2∑′[3/2]

n=1 (−1)n
∑

c∈Cn
sin(8c + 2/2) e−n3c/2

(30)

wherefc(θ0) is the sum off (θj − θ0) wherej goes over the points whose union is the
composite orbitc. In this way, the smooth part of the distribution is separated, and the
‘oscillatory’ part is expressed as a weighted average of the contributions from individual
composite orbits. The weights are not positive, so that the oscillatory term results from a
complicated interference. Hence the chances that the net effect is dominated by a single
composite orbit are slim. This is another expression of the Shnirelman theorem, which
gives a rigorous proof of the statement thatscars are scarce! At any rate, expressions (27)
and (30) have the expected form which justifiesa posteriori the way by which we defined
the representation of the wavefunctions on the section.

Before discussing some numerical results, it is worthwhile observing that the formalism
presented above can be used to provide the semiclassical distribution of the eigenstates
of evolution operators which describe the quantum analogues of classical mappings. As
a matter of fact, the only modification necessary is to replaceS by the unitary evolution
operator, which now does not depend on the wavenumberk [24].

The present study can be also considered as an extension of the recent work of Eckhardt
et al [16], who computed the semiclassical expectation values of observables in configuration
space. They are expressed as weighted sums of contributions of periodic orbits. Here, we
have derived a similar expression which relates to observables on the section.

3. Numerical tests

3.1. The Limacon billiard

We will apply the theory and study scars on the scattering section for the Limacon [25]
billiard, whose boundary is given by

r(φ) = 1 + a cosφ . (31)

The parametera takes values froma = 0 (the circle) toa = 1 (the Cardioid [26]).
At a = 1

2 the billiard has one point where the radius of curvature becomes infinite. For
larger values, the Limacon is not convex and hence no infinite series of whispering gallery
orbits exist, which is one of the reasons why we choose this billiard. The Cardioid has
non-vanishing Lyapunov exponents [27]: however, for the values ofa that give shapes
between the circle and the Cardioid, no rigorous statements about the chaoticity are known.
We used a value ofa = 0.6 since we found stable periodic orbits for smaller values ofa.
The Limacon was first considered a billiard in [28] and since then, it was repeatedly used
by various authors [26, 29].

The numerical solutions of the quantum mechanical exterior and interior problems for
the Limacon are rather straightforward to get. (We shall restrict ourselves to the Dirichlet
boundary conditions.) A numerically useful strategy to calculate theS-matrix is the null-
field approach [30, 31] for the scattering of a billiard with Dirichlet boundary conditions.
By the inside–outside duality, this also provides us with the spectrum of the billiard and the
wavefunctions. In [31] the uniqueness of the solution and also the completeness of various
basis sets on the boundary are demonstrated. For practical purposes, however, a simplified
version for star-like billiards [11] was actually used.
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Table 1.

Number of bounces 2 3 4 5 6 7 8 9 10 11 12
Number of orbits 2 2 5 4 8 10 21 28 51 79 91

Figure 1. Primitive periodic orbits with up to six reflections from the wall.

It is much more difficult to build the necessary classical database on sufficiently long
periodic orbits. The main obstacle is the lack of a symbolic code for the Limacon billiard,
which is guaranteed to provide an immaculate list of periodic orbits. In table 1 we list the
number of periodic orbits we found for different bounce numbers(6 12).

The Limacon is star-like. The Poincaré section for the classical bounce dynamics is
conveniently parametrized in terms of the canonical conjugate variablesθ , the direction of a
chord in the billiard, andb, its impact parameter (b is related to the angular momentum by
l = kb) [23]. To obtain an immaculate set of periodic orbits, we had to heavily oversearch
the parameter space and performed various numerical tests. We are certain that we have
the complete list of periodic orbits withn 6 9 bounces, and that the number of missed
periodic orbits with 9< n 6 12 is not too large. We cannot exclude the existence of minute
elliptic islands near periodic orbits which just bifurcated. The orbits with a maximum of
six bounces are shown in figure 1. In addition to the number of bounces, the orbits can
be classified by their winding number, a scheme that is sufficient for the circle. However,
some orbits are not of the circle type. They originate from bifurcations. The first examples
are the V-shaped orbits 7–9, which are bifurcates of orbit 1.

3.2. Testing the semiclassical approximation

In this section we shall make use of the classical database to construct semiclassical quan-
tities which will be compared with the numerical quantum data. We shall check various
properties which are particularly relevant to the theory developed in the preceding sections.
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Figure 2. Length spectraDn(l) with n = 2 to n =
6. The broken and dotted curves correspond to the
semiclassical and quantum calculation, respectively.
The vertical lines indicate the exact length of the
periodic orbits and the number of the orbit is also
given. The ∗ is used to denote multiples of
shorter primitive orbits, where the first number gives
the multiplicity and the second the number of the
primitive orbit. The complex orbit (see the following
discussion) is denoted by C.
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Figure 3. Creation of a new pair of orbits by bifurcation atabifur ≈ 0.669 48. We show the real
and imaginary part of the complex length calculated by expansion around the bifurcation point.
The squares give the exact length of real periodic orbits and the first symbol is just after the
bifurcation.

The semiclassical approximation for TrSn(k) is of prime importance. To check it, we
compute the function

Dn(l) =
∫ ∞

0
w(k − k0) eikl Tr Sn(k) dk (32)

wherew(x) is a positive window function centred aboutx = 0. The S-matrix has been
calculated and used for the Fourier transform up tokmax = 97. Dn(l) is a ‘length spectrum’
which selects the orbits according to their number of bounces from the boundary and
is a numerically stable observable. It allows a more detailed test of the semiclassical
approximation than the length spectrum obtained by a Fourier transform of the spectral
density. (It follows from (1) that the latter is actually a sum over all theDn(l)). The
numerical and semiclassical length spectra withn 6 6 are compared in figure 2. The
agreement is generally very good. It deteriorates somewhat (see data forn = 2 andn = 3)
for the orbits which bounce at the point where the curvature vanishes (i.e. orbits 1 and
4). The only significant deviation between the semiclassical length spectrum and the exact
one can be seen forn = 6. The peak at lengthl ≈ 12.6 (denoted by C in the figure) is
not reproduced by the semiclassical calculation. Closer investigation reveals that a pair of
new orbits is created by bifurcation atabifur ≈ 0.669 48. Fora < abifur this pair can be
found as the complex solutions of the stationary points of the length of the periodic orbit.
We calculated approximate periodic orbits by expanding around the exact solution at the
bifurcation point for small changes ina. Since the Hessian matrix of the length has one zero
eigenvalue at the bifurcation point it is favourable to change to a basis where the Hessian
is diagonal. Then, the five equations corresponding to the non-vanishing eigenvalues can
be expanded to first order, whereas the remaining equation has to be expanded to second
order, since the first order vanishes. This quadratic equation yields two real solutions for
a > abifur and two complex solutions fora < abifur. Figure 3 shows the real and imaginary
part of the complex length of the bifurcating orbits. For the real orbits we can compare our
expansion with an exact determination of the periodic orbits, for the complex orbits, we can
read off the real part of the length from the figure, and find agreement with the position of
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Figure 4. Length spectrumD4(l, θ). (a) The exact result, (b) the semiclassical theory. The
contour lines are equally spaced and identical in both (a) and (b).

the additional peak in figure 2. A more elaborate analysis of ‘ghost orbits’ can be found
in [32]. Also wavefunctions scarred by ‘ghosts orbits’ have been observed [33]. A more
relevant test of the present theory is obtained by generalizing the length spectrum (32) by
replacing TrSn(k) by Tr [Ascar(θ)Sn(k)]. The precise form of the observable operator (11)
on the section is

〈θ ′|Ascar(θ)|θ ′′〉 = δ(θ ′ − θ ′′)
1√
2π

1

1θ
e−(θ ′−θ)2/2(1θ)2

. (33)

The resulting function

Dn(l, θ) =
∫ ∞

0
w(k − k0) eikl Tr

[
Ascar(θ)Sn(k)

]
dk (34)

is expected to be large at points(l, θ) which correspond to lengths and angles of periodic
orbits with n bounces. For each value of the length, one should observen peaks at values
of θ which mark the directions of the chords which make up the periodic orbit.

Figure 4 shows an example forn = 4 and the parameter1θ = 0.2. This angular
resolution implies a numerically determined lower bound ofkmin = 20 and the largestk
used waskmax = 97. The general agreement between the semiclassical and the full numerical
calculation is good and we can identify the contributions of orbits 5 and 6 atl ≈ 6.1 and
also the V-shaped orbits (7, 8 and 9) atl ≈ 8.1. At l ≈ 9 the repetition of one of the
two bounce orbits can be seen. The repetition of orbit 1 cannot be seen atl = 8 both here
and in figure 2 because of the large Lyapunov exponent and the neighbourhood in length
to orbit 7.

Because of the rather limited number of periodic orbits at our disposal, we are not able
to check (1) and (30) directly. With the present data set of orbits withn 6 12 bounces, we
would have been able to get the semiclassicalζ function in the domain 06 k 6 12. In
this domain there are 35 exact eigenvalues, out of which we were able to reproduce only
the lowest three. The semiclassical theory is not expected to yield accurate eigenvalues at
such low values ofk.
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3.3. Scarred wavefunctions

Scars are scarce, and if we want to compare them in the complete configuration space, and
on the section, we have to be sure that they are really there to start with. If a wavefunction
with wave numberkn is scarred by an orbit of lengthl, an eigenfunction with wave number
km ≈ kn + 2π

l
(m − n) also has a chance of being scarred by the same orbit. Here,n and

m count the nodes along the trajectory [8]. To test this, we calculated all wavefunctions
from k = 10 to k = 52 and visually inspected these 830 wavefunctions for scars along
the simplest periodic orbits. For orbits 2 and 7 we found a set of scarred wavefunctions
with 20 and 54 members, respectively. Odd and even scarred wavefunctions alternate. We
confirmed that these states also appeared scarred in phase space, by computing their Husimi
distributions. At smallk-values a few wavefunctions also showed contributions from other
periodic orbits, but this was never dominant. At highk-values, other periodic orbits had a
smaller influence on the Husimi distributions of the two sets.

The node-number along the scar versus thek-value is given in figure 5 for both cases.
From the slope of the curves, we can determine the length of the periodic orbits to be
l2 = 4.541 andl7 = 8.190 whereas the exact values arel2 = 4.546 andl7 = 8.199.
However, we could not identify a wavefunction which is scarred by orbit 7, with 29 nodes.
The identification was ambiguous in three cases, where two close-by wavefunctions appeared
scarred. In these cases, we used only one of them.

A similar series of scarred wavefunctions were observed by Agam and Fishman [8] for
a variant of the hyperbola billiard, comprising sets for two periodic orbits with 11 and 17
scarred wavefunctions. Despite the fact that we cover a largerk-range, we cannot predict
how the trend displayed in figure 5 will continue ask → ∞. One clue about the largek
behaviour may be given by figure 6 which shows the deviation of thek-value observed to
the fitted line in units of the mean spacing between two wavefunctions. We recognize a
relatively large fluctuation around the mean. We can interpret this with the help of (30).
To create a scar, it is not sufficient that a single term in the sum is large, but also, all other
terms have to interfere destructively. Thus, there is a window around each maximum of a
particular term in (30) for which the wavefunctions are candidates to be scarred. But all
other terms determine whether a scar can really be observed. Ask increases, the number

Figure 5. The k-values of the wavefunctions scarred by orbit 2 and 7. The circles correspond
to odd wavefunctions, the triangles to even ones.
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Figure 6. The same as the previous figure, but deviation from linear behaviour for orbits 2
and 7.

of periodic orbits contributing to the sum increases exponentially. On the other hand, for
a fixed window size, the number of candidates for scarred wavefunctions increases only
linearly. How these two effects will balance is not cleara priori.

We also have to add that we could not find a set of scarred states even in cases where
they should be easy to observe because of a small Lyapunov exponent. In particular, we
could not find a set for one of the triangular orbits. This is due to the existence of some
orbits with nearly the same length, which make the interference very complicated and may
induce some beat phenomena.

We shall now show how the scars which we have unambiguously established in
configuration space appear on the scattering section as predicted in (30).

The representation of the eigenfunction on the section is the eigenvector of theS-matrix
with eigenvalue 1. Its components in the angular momentum basis arest

l so that

〈θ |1t 〉 =
3/2∑

l=−3/2

st
l eilθ . (35)

Thus for the observable, we obtain

〈1t |Ascar(θ0)|1t 〉 ≈
3/2∑

l,n=−3/2

st
l

∗
st
n e− 1

2 (l−n)21θ2
ei(l−n)θ0 . (36)

This eigenvectorst
l also determines the wavefunction

〈r|1t 〉 =
3/2∑

l=−3/2

st
l Jl(kr)il eilθ (37)

in the coordinate representation. In the numerical calculation of the wavefunctions,3 is
taken larger than its semiclassical value to ensure the unitarity of theS-matrix and the
precision of the calculation. Without any exception, these wavefunctions agree inside the
billiard with the eigenfunctions determined using the collocation method [34].

In figures 7 and 8 we present two examples for both, orbits 2 and 7, that nicely
demonstrate the scars on the section. In the cases of orbit 7, a smaller value1θ = 0.05



Wavefunctions, expectation values and scars on Poincar´e sections 3227

Figure 7. Two examples for scars in configuration space and on the scattering section for
orbit 2. The line inside the billiard gives the periodic orbit. The outermost bold line gives the
expectation value ofAscar(θ), where the reference line of zero intensity is given by the inscribed
circle. The arrows indicate the directions (values ofθ ) corresponding to the periodic orbit and
the broken line the semiclassical curve for this orbit.

Figure 8. Like previous figures but for orbit 7.

was used to obtain narrower peaks. For orbit 2 the observable (36) has only two peaks at
π/2 and−π/2 but for orbit 7 additional peaks can be seen and the dominant peaks are also
shifted. But also in the coordinate representation, a pure scar can never be observed. In
particular close to the boundary, the scars are strongly deteriorated from an ideal shape and
also modified by the presence of other orbits. In the same way scars on the section might
be modified due to interference from other orbits.

Finally, we will define the section Wigner function by

fW(L, θ) =
∫ 2π

0

〈
θ + φ

2

∣∣∣∣1t

〉〈
1t |θ − φ

2

〉
dφ

= 2π
∑

l

sL+ l
2
s∗
L− l

2
eiθl (38)

and the corresponding Husimi function

fH(l0, θ0) =
∫ ∫

e− (l−l0)2

21l2
− 1l2(θ−θ0)2

2 fW(l, θ) dl dθ (39)
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Figure 9. Husimi distribution for the eigenstate atk = 40.77, which is scarred by orbit 2. (a)
Shows the exact result and (b) the semiclassical prediction for a state scarred only by orbit 2.

Figure 10. As for the previous figure, but for a state scarred by orbit 7 atk = 35.26.

which gives us the opportunity to look not only at the angular distribution but to determine
the angle and angular momentum for each chord of the periodic orbit. The observable
operatorA is the projection on a coherent state in the angular momentum representation
and the formalism as presented in the second section applies.

In figures 9 and 10 we display the exact numerical results (figures 9(a) and 10(a))
and the picture that is expected if the state is scarred only by one orbit (figures 9(b) and
10(b)), for a state scarred by orbit 2 (figure 9) and the state scarred by orbit 7 (figure 10).
In the figure we changed from angular momentum to impact parameterb. Orbit 2 does
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not pass exactly through the origin and hence the semiclassical picture shows peaks at non-
vanishingb which are hard to resolve in the exact calculation, but can be guessed because of
the elongation of the peak in theb-direction. For orbit 7 the picture is much clearer, because
of the larger impact parameter, and all peaks can be clearly identified in both pictures. In
all cases, the structures in the exact calculation are smoothed out, but hardly any additional
peaks due to other periodic orbits appear.

4. Discussion

In the preceding sections we developed the semiclassical theory for the computation of
smooth observables on Poincaré sections. We used the scattering approach to construct
the Hilbert space which represents the phase space of the section, and to identify the
proper representation of the complete wavefunction in this space. The semiclassical theory
resulted in an expression which provides the expectation value of the observable operator
as a weighted sum of contributions from periodic orbits. The formalism was then illustrated
for the study of scars on a Poincaré section which is used to quantize the Limacon billiard
within the scattering approach.

There are many methods by which one can define the Poincaré section, and even the
scattering approach offers a few variants. In the present study we concentrated on the
quantization of billiards using the exterior–interior duality [11, 20]. The Poincaré section
in this case is the domain in the(l, θ) plane. An alternative quantization scheme can be
achieved by connecting the system to a channel and in this way defining the auxiliary
scattering system [10, 13, 14]. Here, the position on the interface and the component of the
momentum parallel to it provide the classical Poincaré section. The corresponding Hilbert
space is spanned by the transversal eigenfunctions which correspond to conducting modes
in the channel. The formalism which we developed can be easily extended to the channel
construction.

In the scattering approach, we locate an eigenenergyEt by requiring that a certain
eigenvalue of theS(E) matrix approaches 1 asE approachesEt . Truncating the Hilbert
space to include a finite number of evanescent waves, the corresponding eigenvector|1t 〉
exists, and is identified as the appropriate representation of the system wavefunction on
the section Hilbert space. This construction can be explained in the following way. The
scattering approach is based on the idea that a unit eigenvalue of the truncated scattering
matrix implies that there exists a linear combination of incoming waves which go through
the scattering system as if the latter is approximately transparent [21]. In other words, the
exterior wavefunction described by this linear combination can be extended into the interior.
The coefficients of this linear combination are determined by the eigenvector|1t 〉. At this
point it is convenient to specialize the discussion, and we shall consider the approach based
on scattering in the plane. In this case, the wavefunction which satisfies the boundary
conditions, and is regular both in the interior and the exterior, is given by (37). Writing
the Bessel functions as a sum of incoming and outgoing cylindrical waves, and using the
asymptotic expressions of the Hankel functions, we can calculate the incoming current
density

J (θ) = 1

2π

∣∣∣∣∣ 3/2∑
l=−3/2

sl eilθ

∣∣∣∣∣
2

. (40)

Thus, the quantity which we computed semiclassically (after some smoothing) is the current
density. A similar interpretation can be given to the section wavefunction when the channel
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approach is used for quantization.
One of the important lessons we have learned from the present work is how difficult it

is to identify scars and how much care one has to exercise in their study. The periodicity
of scars may, for example, help us to interpret the results in [35], where the authors noted,
that ‘to our surprise, we found only one brilliant example of an intense scar’. In that work,
19 even-parity states around the 2000th even-parity state have been investigated and one
state was scarred by orbit 2. In [36] no obvious scars have been observed to the authors’
astonishment, but only eight states around the 200 000th state were scrutinized. However,
using the density of states, we can easily observe, that it might be necessary to calculate 96
wavefunctions in the first case and 670 for the second case in order to have a good chance
to observe one wavefunction scarred by orbit 2. This is another numerical example that
almost all states are non-scarred [1]. Note that also for Hamiltonian systems, such a series
of scarred states can be identified. In [17] a large number of wavefunctions of the quartic
oscillator are calculated and displayed. From the figures therein, it is easy to identify for
one periodic orbit a set with 19 members and the correct periodicity. Thus, the study of
series of scars may help to elucidate the origin of scars by superposition of contributions
from periodic orbits.
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